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We present a differential formulation of the recursion formula of the hierarchical 
model which provides a recursive method of calculation for the high-tem- 
perature expansion. We calculate the first 30 coefficients of the high-temperature 
expansion of the magnetic susceptibility of the Ising hierarchical model with 12 
significant digits. We study the departure from the approximation which 
consists in identifying the coefficients with the values they would take if a [0, 1 ] 
Pad~ approximant were exact. We show that, when the order in the high-tem- 
perature expansion increases, the departure from this approximation grows 
more slowly than for nearest neighbor models. As a consequence, the value of 
the critical exponent y estimated using Pad6 approximants converges very 
slowly and the estimations using 30 coefficients have errors larger than 0.05. 
A (presumably much) larger number of coefficients is necessary to obtain the 
critical exponents with a precision comparable to the precision obtained for 
nearest neighbor models with fewer coefficients. We also discuss the possibility 
of constructing models where a [0, 1 ] Pad~ approximant would be exact. 

KEY WORDS: Renormalization group; critical exponents; hierarchical models; 
high-temperature expansion; Ising models; epsilon expansion; Pad6 
approximants. 

1, M O T I V A T I O N S ,  M A I N  RESULTS, A N D  N O T A T I O N S  

The  h ierarchica l  m o d e l  t~) is a m o d e l  for which  the r e n o r m a l i z a t i o n  g roup  
t r ans fo rmat ion l2 ) ' r educes  to a s imple  recurs ion  formula .  This  recurs ion  for-  

m u l a  is a s imple  in tegra l  e q u a t i o n  which  has been  s tudied  in grea t  detail .  (3) 

M o r e  recent ly,  in te res t ing  results  conce rn ing  the  ana ly t ic i ty  and  the loca-  
t ion o f  the  c o m p l e x  zeros  o f  the  p robab i l i t y  d i s t r ibu t ion  assoc ia ted  wi th  the  
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infrared fixed point have been found. (4~ The hierarchical model has a free 
parameter e which is used in the e-expansion. By adjusting this parameter, 
one can use the hierarchical model as an approximation (1-5) to nearest 
neighbor models in various dimensions. In the case D = 3, the hierarchical 
approximation yields values of the critical exponents which agree within a 
few percent with the best estimates for nearest neighbor models. 

A difficult but interesting question is how to improve the hierarchical 
approximation while keeping control of the complexity of the renormaliza- 
tion group transformation. This question can be answered for Gaussian 
models using group-theoretic methodsJ 6~ However, the extension of these 
methods to interacting models is not straightforward because many more 
terms can be generated perturbatively. The main problem consists in iden- 
tifying the most important perturbations which should be added to the 
hierarchical model in order to obtain a critical behavior more similar to 
nearest neighbor models. A possible indicator which could be used to 
achieve this goal is to calculate the effect of a perturbation on the high-tem- 
perature coefficients. Before evaluating the effects of these perturbations, it 
is necessary to develop efficient methods to calculate the high-temperature 
expansion of the (unperturbed) hierarchical model. Recently, analytical 
formulas for the first four coefficients of the magnetic susceptibility were 
calculated for an Ising measure. (v~ The method used relies on high-tem- 
perature graphs. Due to the nonlocality of the model, the terms appearing 
in the coefficients rapidly proliferate and require elaborate symbolic 
methods to be handled. 

In this article, we present a recursive method which allows an efficient 
calculation of the high-temperature expansion of the hierarchical model. 
This method combines the renormalization group method with the high- 
temperature expansion, but does not rely on any graphical analysis. It is a 
simple differential version of the recursion relation (with an arbitrary 
rescaling of the spin variable). It essentially solves the problem of the high- 
temperature expansion provided that we keep the numerical stability and 
the volume effects under control. This method is explained in Section 2, 
where we also calculate the first 30 coefficients of the high-temperature 
expansion of the magnetic susceptibility of the hierarchical Ising model in 
a large (2 6o sites) but finite volume. Checking with analytical results and 
comparing different implementations of the differential recursion formula, 
we claim that for e -- 1, the method is numerically stable as far as 12 signifi- 
cant digits are concerned, and that within this precision, the first 30 coef- 
ficients have reached their infinite-volume limit when 2 6o sites are reached. 
We also briefly discuss the possible use of the differential formula to obtain 
analytical results concerning the high-temperature expansion. 

In Section 3, we study the departure from the approximation which 
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consists in identifying the coefficients with the values they would take if the 
[ 0, 1 ] Pad6 approximant for the logarithmic derivative of the susceptibility 
were exact. The resulting approximate relation among the coefficients was 
suggested by a numerical study t8) where we calculated (without any 
approximation) the magnetic susceptibility of the hierarchical Isin model 
with up to 218 sites. In this study, we found that the numerical data can be 
fitted very precisely with a simple power law of the form (1 - f l / f lo)-g  in the 
whole high-temperature region, i.e., for fl E [0, tic). The values of g obtained 
from the numerical data or from the [ 0, 1 ] approximant differ significantly 
from the best estimates of the values of the critical exponent y 
calculated 13"9) with the e-expansion. In the case of the numerical data, the 
most plausible explanation provided by a renormalization group analysis c8) 
is that this discrepancy is due to the limited size of the lattice used in these 
calculations. As we shall recall in the following section, if the lattice has 2" 
sites, the recursion formula can only be used n times, and n = 17 does not 
seem to be enough to get rid of the irrelevant components of the measure. 
On the other hand, the fact that a [0, 1] approximant gives a poor 
estimate is not surprising. What is surprising is how slowly the departure 
from this approximation grows when the order in the high-temperature 
expansion increases. 

In Section 4, we use Pad6 approximants to estimate y and tic- We first 
discuss how the results depend on the volume. We show that when the 
volume is not too large--less or much less than 220 sites for the orders con- 
sidered here--the approximants can resolve a pair of complex conjugate 
roots approaching the real axis in the complex temperature plane. 
However, for larger volume, two real roots appear with--in a large 
majority of cases--only one root stabilizing near fl,.. This stabilization 
toward the infinite-volume seems to occur with a precision comparable to 
the precision of the coefficients. We checked this statement for the six 
approximants which can be calculated from the exac(7) values of the first 
four coefficients at infinite volume. We concluded that the errors on the 
estimation of the critical quantities due to finite-volume or roundoff errors 
were very small compared to the size of the effects discussed below. More 
precisely, the 12-significant-digits precision on the infinite-volume coef- 
ficients is more than sufficient to discuss effects of order 10 - 3  in the critical 
quantities. The results for the 435 approximants that one can obtain from 
the coefficients up" to order 30 are then presented. The estimate of tic are 
slightly too high for low-order approximants, but seem to converge 
reasonably well (i.e., small errors in the fourth significant digit in most of 
the cases) when the order becomes large enough. On the other hand, the 
estimates of ~, are significantly too high for low-order approximants and 
evolve very slowly toward our best estimates. In order to give an idea, 
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absolute errors of order 0.07 and 0.11 (respectively) are typical of the large- 
order estimations for e = 1 and 0 (respectively). 

These large discrepancies can be understood in terms of the 
approximate relations discussed in Section 3. For instance, the values of the 
critical exponent y extracted from a [9, 10] Pad6 is still midway between the 
crude estimate given by the [0, 1 ] approximant (e.g., 1.52 for e = 1) and the 
exact value (1.30, in the same case). This point is discussed at length in Sec- 
tion 4 for e = 1 and 0. From these results, it appears that a (presumably 
much) large number of coefficients is necessary to obtain the critical 
exponents of the hierarchical model with precision comparable to these 
obtained (1~ for nearest neighbor model (i.e., a precision of 0.001 or better). 

We also discuss (Section 5) the possibility of constructing models 
where a [0, 1 ] Pad6 approximant would be exact. We first compare the 
approximate relations for the hierarchical model and the nearest neighbor 
models when the dimensional parameter D = 4 -  e is varied. We show that 
the corrections to the Gaussian result (for which the approximation is 
exact) appear only at second order in the lID expansion (12) for the 
hierarchical model, while it appears in first order for nearest neighbor 
models. Unfortunately, the use of this expansion is obscured by a prolifera- 
tion of zeros and poles appearing in the expression of the coefficients when 
D is promoted to a complex variable. ~7) We also mention the fact that 
supersymmetric models (~3) might be used as a guide to achieve this goal. 

In the conclusions, we give various estimates of the number of coef- 
ficients necessary to calculate ~, with a reasonable precision. We discuss 
briefly the feasibility of the project and additional problems which could 
be considered in this context. We also compare with other recursive 
methods I1~) used to calculate the high-temperature expansion of the 3D 
Ising model. This raises the following dilemma: on one hand, we have a 
much simpler and efficient method of calculation; on the other hand, we 
need many more coefficients to obtain comparable information. 

In order to give a self-contained presentation, we briefly recall our 
conventions concerning the hierarchical Ising model and its free parameter. 
Hierarchical models (~) are specified by a nonlocal Hamiltonian bilinear in 
the spin variables and a local measure of integration. In the following, we 
consider exclusively the case of an Ising measure where the spin variables 
take only the values + 1. The models considered here have 2" sites. In the 
following, n will always be used in this sense. We label the sites with n 
indices x ...... , x~, each index being 0 or 1. The energy of a spin configura- 
tion reads 

H =  - ~  t s  s o-, ........... ,) 
1 Xn,... ,  X l+  I X l  Xl 

(1.1) 
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The motivations for this construction and the derivation of the recursion 
formula are reviewed in ref. 8. 

The model has a free parameter c for which we shall use the 
parametrization 

c=21-2/D (1.2) 

The parameter of the e-expansion can be defined as 

e = 4 - - D  (1.3) 

When D/> 4, the model has a trivial continuum limit) 31 When D ~< 2, the 
model does not have a phase transition at finite temperature/~ These two 
rigorous results can be understood heuristically in terms of the self-inter- 
section properties of the random walk associated with H, by noticing that 
the Haussdorff dimension of this random walk is 2 /DJ  ~4~ From the point 
of view discussed at the beginning of the introduction, the most interesting 
region is 2 ~ D ~ < 4  (i.e., 1 ~<c,.<2~/2); however, the model has a sensible 
infinite-volume limit for a wider range of the free parameter, namely 
0 < D < oo (i.e., 0 < c < 2). We define the magnetic susceptibility per site as 

. x  - (1.4) 

The high-temperature expansion of this quantity reads 

Xo(fl) = 1 + bi.,,fl + bz.,,fl2 + . . .  (1.5) 

2. A R E C U R S I V E  M E T H O D  FOR THE C A L C U L A T I O N  OF THE 
H I G H - T E M P E R A T U R E  E X P A N S I O N  

Due to the nonlocality of the hierarchical model, the evaluation of the 
coefficients is rather tedious. We have used three types of techniques to 
calculate these coefficients. Two of them have been described at length in 
ref. 7. Up to order 4, analytical calculations can be performed using 
algebraic methods tT~ and yield expressions where D and n are arbitrary. 
Substituting numerical values into these formulas provides very precise 
numerical comparisons with other numerical methods. We checked the 
validity of the analytical results by introducing a high-temperature expan- 
sion in the numerical method used in ref. 8. This numerical method is very 
reliable but rather slow and does not allow large-n calculations, because 
the computer time involved grows like 4". 

In order to perform large-n calculations, we have designed another 
method of calculation based on the Fourier transform version of the 
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recursion relation. If we call P,,(k) the Fourier transform of the probability 
of the mean spin for 2" sites, we obtain the recursion relation 

[ ,  o2] P.+,(k)=e.+~exp -~f l  ~ (P,,(k)) 2 (2.1) 

where C,, + 1 is adjusted in order to get P ,+  ~(0)= 1 and the exponential of 
the second derivate is defined through the Taylor expansion. For the Ising 
model considered here, the initial function is 

Po(k) =cos(k)  (2.2) 

In this formulation, the magnetic susceptibility reads 

1 a 2 k = 0  z,(/~) = 2" ok-' P,,(k) (2.3) 

More generally, /~,(k) generates the average values for the even powers of 
the mean spin: 

,,=o 2m! . tr,. . (2.4) 

Equation (2.1) is a differential formulation of the recursion formula. 
Unlike the original formulation, it does not involve any integrals and it can 
be reduced to a sequence of purely algebraic operations when expanded in 
powers off l  to a given order. In other words, (2.1) can be seen as a recur- 
sive definition of the high-temperature expansion of the average values of 
the even powers of the mean spin. This simple procedure completely solves 
the problem of the high-temperature expansion of the hierarchical model, 
provided that the operations can be performed within a reasonable amount 
of time and provided that we can reach the infinite-volume limit with an 
acceptable numerical precision. 

The computer time necessary to calculate the m first coefficients grows 
like m2n since we only need to retain the first 2m + 2 terms in the Taylor 
expansion of the functions introduced in the recursion formula. This is 
much better then the 4" behavior reached by straightforward evaluation ~71 
following the integration method of ref. 8. In order to give an idea con- 
cerning the absolute time scale, it takes a little less than 2 days, with 
Mathematica, to iterate 60 times Eq. (2.1) expanded up to order 30. 

Since the method requires many iterations, it is important to check the 
numerical stability of the algorithm. One potential numerical difficulty is 
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the appearance of large numbers in (2.4), since one expects (see Section 3 
of ref. 8) that for large n, 

a:,. oc 2 .... (2.5) 
n 

This difficulty can be overcome either by replacing (2.1) by a recursion 
formula for the logarithm of/~,, divided by the number of sites, or by intro- 
ducing an appropriate rescaling in (2.1). In the following, we only discuss 
the magnetic susceptibility and consequently the second possibility is the 
most convenient one. In general, a rescaled version of (2.1) can be obtained 
by defining 

Rz . , ( k )=l~ , (k )  (2.6) 

In terms of this rescaled quantity, (2.1) becomes 

, exp l c ~_~_~] [ R),,, ( k ) ]  2 Ra,,+,(k)=C,,+~ I - -~ f l (~22)"+ '  02 (2.7) 

The large-volume behavior shown in (2.5) can then be compensated by 
chosing 2 = x/~. This choice has been used for all the numerical results 
given hereafter. This modification improves significantly the precision of 
the calculation as discussed below. Note also that the renormalization 
group transformation is obtained by taking 2 =2c -~/2 in (2,7). 

In the rest of this section and the next section, we discuss mostly the 
numerical results for D = 3. Results for other values D will be discussed in 
Sections 4 and 5. Checking the numerical results obtained with the rescaled 
recursion formula (2.7) at 2 = x / ~  for the first four coefficients for all n up 
to 60 with the exact results at finite volume, 17~ we found errors of at most 
1 in the 13th significant digit. This precision is almost twice better than the 
one obtained with the original formula (2.1). We have also compared 
slightly different numerical implementations for which the roundoff errors 
should be different and found agreement at that level of precision for the 
30 coefficients. We "conclude that after 60 iterations, the numerical errors 
are at most in the 13th significant digit. 

The next question is to determine how close the coefficients calculated 
w i t h  2 60 sites are to the infinite-volume ones. In order to get a first idea 
concerning the volume dependence of the coefficience, the results for D - - 3  
and n = 10, 20, 30, and 40 are given in Table I. It is possible to compare 



350 Meurice and Ordaz 

Table I. Coefficients of High-Temperature Expansion of Susceptibility 
up to Order 20 for Hierarchical Model wi th D = 3  and 2" Sites wi th 

n = 1 0 ,  20, 30, and 40" 

b,,,,,, hierarchical model, D = 3 

m n = 10 n =20 n = 3 0  n = 4 0  

H M  se m b.,(b I / b j )  
simple 
cubic 

1 1 . 2 2 5 8 4 9 7  1 . 2 4 2 4 3 7 4  1 . 2 4 2 6 0 0 8  1 . 2 4 2 6 0 2 4  1.2426024 
2 1 . 2 3 8 9 5 3 9  1 . 2 7 9 8 8 6 3  1 . 2 8 0 2 9 2 2  1 . 2 8 0 2 9 6 2  1.2867173 
3 1 . 1 8 2 0 8 5 1  1 . 2 4 9 0 8 9 7  1 . 2 4 9 7 5 9 9  1 . 2 4 9 7 6 6 5  1,3146331 
4 1 . 0 7 8 5 2 5 3  1 . 1 7 0 3 1 5 9  1 . 1 7 1 2 4 3 5  1 . 1 7 1 2 5 2 7  1.2987587 
5 0.9628730 1 . 0 7 6 0 6 2 7  1 . 0 7 7 2 1 9 8  1 . 0 7 7 2 3 1 2  1.2804051 
6 0.8452212 0.9755497 0.9768990 0.9769123 1.2429628 
7 0.7316955 0.8746523 0.8761526 0.8761674 1.2051755 
8 0 . 6 2 7 4 0 0 1  0.7785983 0.7802084 0.7802243 1.1594697 
9 0.5339023 0.6893634 0.6910447 0.6910612 1.1146199 

10 0.4510918 0 . 6 0 7 3 7 8 1  0.6090960 0.6091130 1.0663937 
11 0.3787313 0 . 5 3 2 9 7 7 1  0.5347017 0.5347187 1.0196561 
12 0.3163770 0.4662812 0.4679872 0.4680040 0.9718193 
13 0.2631594 0.4069559 0.4086227 0 . 4 0 8 6 3 9 1  0.9258158 
14 0.2179946 0.3543998 0.3560112 0.3560270 0.8799407 
15 0.1798494 0 . 3 0 7 9 9 6 1  0.3095398 0 . 3 0 9 5 5 5 1  0.8360504 
16 0.1478169 0.2671874 0.2686545 0.2686690 0.7929596 
17 0.1210802 0.2314434 0 . 2 3 2 8 2 8 1  0.2328417 0.7518815 
18 0.0988810 0.2002368 0.2015355 0.2015483 
19 0.0805232 0.1730514 0.1742628 0.1742747 
20 0.0653886 0.1494050 0.1505292 0.1505403 

O The last column is for the nearest neighbor model on a simple cubic lattice, ct~ The 
temperature of the nearest neighbor model has been rescaled in such way that the first coef- 
ficients of the last two columns coincide. 

the values of the first four coefficients with their infinite-volume-limit 
v a l u e s  c 71: 

bl = 1.242602432206561 

b2 = 1.280296258947416 

b 3 = 1.249766644307651 

b4 = 1.171252787942138 

(2.8) 

One sees that, roughly, the agreement with the infinite-volume limit 
improves by two digits each time that n is increased by 10. This suggests 
that the volume dependence is exponentially suppressed. In order to check 
this possibility, we plot in Fig. 1 the logarithm of b, , , ,  60 - b . . . . . .  for n < 60 
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and rn = 1, 5, 10, 15, 20, 25, and 30. We selected these few values of m in 
order to keep the distinction among various values of m visible on the 
figure. The trajectories for other m fall approximately within the envelope 
delimited by the ones displayed. The figure makes clear that the length of 
the plateau at low n increases with m, in other words, higher order coef- 
ficients take a larger volume to stabilize (with exponential  precision) near 
their infinite-volume limit. After this, all the trajectories appear more or less 
parallel. The slope can be compared with the analytical results, ~7~ which 
show that the leading n-dependence of the first four coefficients comes from 
terms proport ional  to (c/2)". We recall that in the case considered here 

Table II. Coefficients of High-Temperature 
Expansion of Susceptibility up to Order 30 for 

Hierarchical Model with D = 3  and 4 with 2 s~ Sites 

m D = 3 D = 4 

1 1 .2426024322  1.8672953994 
2 1 .2802962589  3.0879661428 
3 1 .2497666443  4.9423326203 
4 1 .1712527879  7.7505802450 
5 1 .0772313925  12.036610824 
6 0 . 9 7 6 9 1 2 4 5 5 9  18.565938390 
7 0 .8761675869  28.502628210 
8 0 .7802244571  43.615416069 
9 0 .6910614366  66.575570826 

10 0 .6091131879  101.42207830 
11 0 .5347188783  154.26742310 
12 0 .4680042277  234.35472026 
13 0 .4086393523  355.65012974 
14 0 .3560272432  539.25066450 
15 0 .3095552571  817.02121529 
16 0 . 2 6 8 6 6 9 1 8 6 8  1237.0802615 
17 0 .2328419183  1872.0705677 
18 0 .2015484692  2831.6298782 
19 0 .1742748982  4281.1957614 
20 0 .1505404954  6470.3600007 
21 0 . 1 2 9 9 1 2 9 1 5 6  9775.6156412 
22 0 .1120106353  14764.791847 
23 0 .0964971984  22294.166403 
24 0 .0830737698  33654.812081 
25 0 .0714737313  50793.117545 
26 0 .0614596993  76643.050521 
27 0 .0528217428  115626.74582 
28 0 .0453756513  174408.63341 
29 0 .0389607903  263031.43468 
30 0 .0334376111  396627.26868 
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(D = 3), c = 21/3. The general agreement with this prediction is quite clear 
in Fig. 1. In conclusion, Fig. 1 supports convincingly the possibility that the 
coefficients displayed reach their infinite-volume limit with an exponential 
precision, and that up to the 30th coefficient for D = 3, the n = 60 results 
give estimates of the infinite-volume values which are accurate up to the 
12th significant digits (which is the limit of our numerical precision). The 
numerical results are given in Table II for n = 60 and D = 3 and also, for 
further reference, for D = 4. 

For comparison, we also give in Table I the first 17 coefficients for the 
nearest neighbor model in three dimensions on a simple cubic lattice. These 
coefficients have been calculated from the tables given in ref. 10. Note 
that these tables are given for the expansion parameter tanh(fl), and an 
additional expansion is necessary in order to obtain an expansion of the 
form of Eq. (2.5). In addition, we rescaled the temperature of the nearest 
neighbor model in such a way that its first coefficient coincides with the 
one of the hierarchical model in the infinite-volume limit. The large discre- 
pancies indicate that the high-temperature coefficients should be sensitive 
to "nonhierarchical" perturbations. 

Before closing this section, let us mention the possibility of using 
Eq. (2.7) to obtain analytical results. This equation relates the average 
value of the 2ruth power of the mean spin expanded to a certain order in 
fl to average values of larger m and lower order in ft. This suggest a 
bootstrap procedure which is presently under investigation. Note also that 
the (c/2) n rule for the volume dependence appearing in Fig. 1 can be 
inferred from Eq. (2.7) with/l  =,r with (2.5). Finally, let us mention that 
when n goes to infinity, the recursion formula has a fixed point of the form 
exp(-�89 The linearized transformation about this fixed point is 
presently under study. 

3. A P P R O X I M A T E  RELATIONS A M O N G  THE 
H I G H - T E M P E R A T U R E  COEFFIC IENTS 

In a recent numerical calculation, (8~ we found that the numerical data 
for the susceptibility at n = 14, 15, and 16 can be fitted very precisely with 
a simple power law of the form ( 1 - f l / f lo) - g  in the whole  high-temperature 
region. As a consequence, it is possible to obtain a simple approximate 
formula for the high-temperature coefficients of the susceptibility in terms 
o f g  and fl0 by comparing Eq. (2.5) and 

I - -  = I +  + 2 , B ~  + ... (3.1) 



354 Meurice and Ordaz 

Approximate values for g and flo are obtained by comparing the two 
first terms of Eqs. (3.1) and (2.5). Solving g/ f lo=b~. , ,  together with 
g(g + 1 )/2flo = b2, ,,, we obtain 

(2b~ . , _  1 / - |  
g = \  bi,,, / 

(3.2) 
/ 2 b ,  , \ - l  

By comparing Eq. (2.5) with Eq. (3.1) and plugging in the values offlo 
and g given by Eq. (3.2), we obtain approximate values of the coefficients 
denoted h appr As an example, at third order we obtain - - m ,  n " 

b~ppr=g(g  + 1) (g+2)  
6fl3o (3.3) 

Using Eq. (3.2), we then obtain 

b,pp~ b ~ _ { 4 b 2 . ,  b 3., = ~--U'---- I ."/  (3.4) 
3 \ U l , n  / 

Note that the approximate relations are homogeneous in the sense that at 
order m, all the terms have the form hq hp with 2p + q = m. u l ,  n u 2 ,  n 

In order to see how well these approximate relations are satisfied, we 
have calculated the difference between the exact and the approximate 
values of the coefficients, denoted 

�9 a p p r  
zl  . . . . .  = b  . . . .  - b  ...... (3.5) 

Note that due to the homogeneity of the approximate relations mentioned 
above, the ratio d ..... /b ..... is invariant under a rescaling of the temperature. 
In particular, this implies that the rescaling of fl is used in Table I for the 
nearest neighbor model has no effect on this ratio. The numerical values of 
this ratio for D = 3 ,  m up to 30, and n = 4 0  and 60 are displayed in 
Table III. The comparison between the results for the two values of n 
shows that the volume dependence is not an issue for the discussion in the 
rest of this section. 

We can now compare the approximate relations for the hierarchical 
model and the nearest neighbor model. We see that in both cases the 
quality of the approximation deteriorates when m increases. However, the 
rates are quite different: in the nearest neighbor case, A . . . .  /b . . . .  increases 
by approximately 0.04 each time m is increased by 1, while the corre- 
sponding increase is approximately 0.02 (and decreases with m) for the 
hierarchical model. 
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Table III. Difference Between Exact and Approximate Values of 
First 30 Coefficients Divided by Exact Value, for Hierarchical Model with D = 3  

and 2" Sites with n = 4 0  and 60 ~ 

d , . . , / b m ,  n hierarchical model, D = 3 

m n=40 n =60 
simple 
cubic 

3 0.0169805368 0.0169805378 
4 0.0305918123 0.0305918165 
5 0.0482486380 0.0482486469 
6 0.0671925761 0.0671925914 
7 0.0860796469 0.0860796701 
8 0.1059520949 0.1059521270 
9 0.1266286057 0.1266286476 

10 0.1473343900 0.1473344426 
I1 0.1679293974 0.1679294615 
12 0.1886442528 0.1886443288 
13 0.2094865664 0.2094866545 
14 0.2302279746 0.2302280751 
15 0.2506805821 0.2506806952 
16 0.2708136887 0.2708138145 
17 0.2906785507 0.2906786892 
18 0.3103045616 0.3103047126 
19 0.3296623492 0.3296625126 
20 0.3486881339 0.3486883093 
21 0.3673252136 0.3673254009 
22 0.3855482352 0.3855484341 
23 0.4033616171 0.4033618273 
24 0.4207829386 0.4207831598 
25 0.4378265287 0.4378267605 
26 0.4544958062 0.4544960481 
27 0.4707843981 0.4707846497 
28 0.4866817079 0.4866819688 
29 0.5021786614 0.5021789312 
30 0.5172713168 0.5172715950 

0.0540540 
0.1076487 
0.1751963 
0.2374947 
0.3020008 
0.3614195 
0.4191415 
0.4719078 
0.5216787 
0.5669304 
0.6089341 
0.6469778 
0.6819434 
0.7135224 
0.7423546 

a The last column is the same quantity for the nearest neighbor model on a simple cubic 
lattice. 

E q u a t i o n  (3.2) is exact ly  w h a t  we w o u l d  have  ob t a ined  f rom a [0,  1 ] 

Pad6  a p p r o x i m a n t  for the  l oga r i t hmic  der iva te  o f  the susceptibil i ty.  In  the  

in f in i t e -vo lume lirfiit, we ob t a in  g = 1.5189 and  flo = 1.2224. T h e  va lue  o f  g 
is s ignif icant ly  la rger  t han  the va lue  of  the  cri t ical  e x p o n e n t  ~ ob t a ined  (91 

in the e -expans ion ,  n a m e l y  1.300. A va lue  close to 1.30 has  also been  

ob t a ined  wi th  i n d e p e n d e n t  m e t h o d s  by Bleher  and  Sinai  is). The  va lue  of  flo 

is a lso s ignif icant ly  la rger  t han  ou r  best  e s t imate  (8~ t i c =  1.179. It  is n o t  a 
surprise  tha t  a [0,  1] Pad6  a p p r o x i m a n t  p rov ides  bad  es t imates  o f  the 

822/82/1-2-23 
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critical quantities. What is a surprise is how slowly the high-temperature 
series of the hierarchical model departs from this poor approximation when 
the order m increases. This slower rate of departure implies that a number 
of coefficients much larger than in the nearest neighbor case is necessary in 
order to estimate the critical quantities with a comparable precision. 

We suspect that there exists a definite relationship between the quality 
of the estimates made from finite n and infinite m (as done in ref. 8) and 
those made from finite m and infinite (or sufficiently large) n (as done here). 
This remark is motivated by the observation that the values of y obtained 
at n = 16 (e.g., 1.47 for D = 3) are close to those obtained from low-order 
Pad6 approximants (see next section). The discrepancy of the finite-volume 
fits with the e-expansion was attributed ~s~ to the fact that for n = 16, for 
instance, we can only use the recursion formula 16 times, while a larger 
number seems necessary to get rid of the irrelevant components of the 
measure. This statement has a counterpart for the high-temperature expan- 
sion, which is roughly the following: the coefficients which at a finite n have 
reached their infinite value with an acceptable precision provide estimates 
of the critical exponents consistent with the finite-n data. Since a direct 
calculation of the susceptibility at n = 30 or 40 seems excluded with the 
exact method used in ref. 8, we cannot sharpen further the statement made 
above. However, the n dependence of the numerical estimates shown in 
Figs. 11 and 12 of ref. 8, the regularity of the length of the shoulders of 
Fig. 1 of the present paper, and the results shown below suggest that a 
more quantitative study could be made in the future, possibly using 
Eq. (2.7). 

4. E S T I M A T I O N  OF I~c A N D  7 U S I N G  PADE A P P R O X I M A N T S  

In this section, we discuss the estimation of tic and y, using [L, M]  
Pad+ approximants with L + M +  1 ~<30. In the following, we call 
L + M + 1 the order of the approximant. Since our calculation of the coef- 
ficients has been done at large but finite volume, we will first address the 
question of the volume dependence of the results obtained. As well known, 
at finite volume, a singularity of the susceptibility on the real temperature 
axis is impossible. However, when the volume increases, a pair of complex 
conjugate singularities can approach arbitrarily closely the real axis. As we 
now proceed to explain, the Pad+ approximants sense this approach of the 
real axis, but with a finite resolution. 

We studied a large set of approximants using the finite-volume coef- 
ficients and followed the motion of the roots of the denominator when the 
volume is increased. We observed the following patterns in a large majority 
of cases. For n below a number which is usually between 10 and 15, the 
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roots move by large steps, usually of  the same order as the change in 
the coefficients. During this preliminary motion,  a pair of  roots "pinches" 
the real axis and two clearly distinct real roots appear. This situation is 
illustrated in Fig. 2. One of  these two real roots almost immediately stabi- 
lizes near tic (1.179 in this case), while the other makes a few erratic steps 
before stabilizing (more slowly) near another real value clearly distinct 
from tic. Figure 3 illustrates the small size motion of all the roots in the 
complex plane for n between 17 and 60. All the roots are well separated 
and for the roots labeled 1, 3, 4, 5, and 6 the changes are barely percep- 
tible. We skipped n = 14, 15, and 16, because the root  labeled as 2 in Fig. 2 
makes sudden changes during these three steps. Compar ing with other 
cases, it appeared clearly that the value of  n for which the pinching of  the 
real axis occurs increases with the order (L + M +  1) of the approximant.  
In other words, it appears that the Pad6 approximants of  a given order can 
only resolve a pair of  complex conjugate roots when their distance to the 
real axis is not less than a certain value (which decreases with the order of  
the approximant).  

D=5, P a d e [ 8 , 8 ] ,  n : 6  - >  13  

0 . 6  . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . . . . . . . . . . . .  

O 
E 

O 
E 

Fig. 2. 
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The motion of the pair of complex conjugate roots near the critical value for n 
between 6 and 13. A [8, 8] Pad6 approximant was used for D = 3. 
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Fig. 3. The motion of all the roots for n between 17 and 60 with a [ 8, 8] Pad6 approximant  
and D = 3. 

In most of the cases, the roots are widely separated for n>20 .  
However, there are a few exceptional cases where two real roots are very 
close to tic, for instance, the [13, 12] and the [12, 13] approximants for 
D = 3 ,  and also [10, I1] and [11, 12] for D = 4 .  In these special cases, the 
residues at both poles are very different from the residues at the pole near 
fl,. for most approximants of comparable order. 

A closer look at the numbers indicates that the change in the location 
of the pole near 1.18 and the change (due to the volume) in the value of 
the residue at the pole decrease exponentially when the volume is increased. 
In the case of approximants requiring four coefficients or less, we can 
indeed obtain a precise comparison between the results at n = 60 and 
17 = oo using the infinite-volume limit values of Eq. (2.8). We found that for 
the six approximants with L + M + 1 ~< 4 the difference between the n = 60 
and n = ~ appears at worst in the 1 lth significant digit for both fl,. and y. 
We also made independent random changes of order 10-4 in the values of 
a few coefficients and did not observe any instability in the estimations. 
Our general conclusion concerning the volume dependence of the estima- 
tions obtained from Pad6 approximants calculated with coefficients corre- 
sponding to models with 2 60 sites is that the results obtained approximate 
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Table IV. Values of Pc and - 7  (in parentheses) for D = 3  Obtained from 
[ j+k, j ]  Pad~ Approximants, for 1 ~<j~<14 and k =  +1 and 0" 

p,. (-~,) 

j k =  - 1  k = 0  k = l  

1 1.222394 (-1.518949) 1.135464 
2 1.183125 (-1.449299) 1.195448 
3 1.189636 (-1.469088) 1.187859 
4 1.187982 (-1.460682) 1.187864 
5 1.189636 (-1.467927) 1.183937 
6 1.183235 (-1.422855) 1.184452 
7 1.193406 (-1.397933) 1.181859 
8 1.181416 (-1.401304) 1.180724 
9 1.181619 (-1.404328) 1.182650 

10 1.179699 (-1.366305) 1.179873 
11 1.179632 (-1.364583) 1.180326 
12 1.180177 (-1.378432) 1.178694 
13 1.171789(-0.81937*) 1.177754 
14 1.179944(-1.373549) 1.179709 

-1.310594) 1.246632 (-1.734454) 
-1.494930) 1.181455 (-1.421848) 
-1.459889) 1.187994 (-1.460775) 
-1.459908) 1.183228 (-1.423736) 
-1.430664) 1.183605 (-I.427262) 
-1.434872) 1.180596 (-I.388929) 
-I.408136) 1.181538 (-I.403356) 
-1.387517) 1.181836 (-I.407342) 
-1.414949) 1.180967 (-1.394885) 
-1.370865) 1.180268 (-1.380805) 
-1.382215) 1.180282 (-1.381124) 
-1.322758) 1.173194 (-0.92856*) 
-1.271869) 1.180257 (-I.382405) 
-1.365857) 1.179725 (-1.366443) 

a An asterisk indicates two very nearby poles. 

the infinite-volume results with a precision which is far beyond what would 
be required to discuss effects of the order of 10-3 in the critical quantities. 

We can now present the numerical results. In Tables IV and V we give 
the values of tic and 7 obtained from the [j+k,j] approximants for 
1 ~<j~< 14, k =  _+1,0, and D = 3  and 4. In both cases, we have used the 

Table V. Same Quantities as in Table IV, but for D = 4 

p,. (-~,) 

j k =  - 1  k = 0  k = l  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 

0.694383 (--1.296619) 
0.675868 (--1.240424) 
0.680365 (--1.241321) 
0.668001 (--1.170086) 
0.666688 (--1.147293) 
0.666958(- 1.152793) 
0.666418 (-1.139410) 
0.666418 (--1.139410) 
0.666005 --1.124491) 
0.666030 -1.125610) 
0.664996 -1.03404") 
0.668440 -1.00079") 
0.665800 --I.113384) 
0.665937 --I.120872) 

0.665722 
0.674069 
0.670043 
0.663631 
0.667201 
0.666199 
0.666418 
O.666009 
0.666009 
0.666018 
0.665567 
0.665818 
0.666001 
0.667435 

--1.191788) 0.681561 (--1.278896) 
--1.229981) 0.670338 (--1.200979) 
--1.197792) 0.670399 (-1.201272) 
--1.071941) 0.667729 (--1.168325) 
--1.157996) 0.663790 (--1.037130) 
--I.132816) 0.666550 (--1.143434) 
--1.139406) 0.665664(--1.108706) 
--1.124682) 0.666005 (--1.124495) 
--1.124668) 0.666034 (--1.125764) 
--1.125068) 0.665965 (--1.122604) 
--1.095758) 0.665791 (--1.112854) 
--1.114617) 0.665807 (--1.113874) 
--1.122615) 0.665969 (--1.121304) 
-1.129101) 0.667029 (--1.169627) 
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coefficients for n = 60. We can now compare these results with our best 
estimates. In the case D = 3, one observes a very slow (compared to nearest 
neighbor models) progression toward tic= 1.179 and r 7 =  1.300 when 
the order of the approximants is increased. In the case D = 4, there is a 
similar progression toward tic = 0.665 and the trivial value 7 = I. 

In order to give a more complete idea concerning the results obtained 
from Pad6 approximants, we give in Fig. 4 the distribution of values 7 
obtained from the 435 different approximants of order less than 30 for 
D =  3. Less than 0.5% of the data fell outside of the figure. The figure 
shows separately the distributions for L + M ~< 10, 10 < L + M ~< 20, and 
20 < L + M < 30. The figure makes clear that the distribution gets more 
peaked and that the average decreases when the order of the approximants 
increases. The average for the distribution with 20 < L + M <  30 is 1.382, 
which is still far from 1.300. Note also that the number of approximants 
giving a value of 7 near 1.30 is nonnegligible for L + M < 10; however, this 
feature clearly fades away when the order increases. 
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Fig. 4. Distribution of the values of 7 obtained from Pad6 
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5. ARE THERE MODELS FOR WHICH THE APPROXIMATE 
RELATIONS ARE EXACT? 

Up to now, the approximate relations discussed in Section 3 have had 
a rather unpleasant effect: we need to calculate many coefficients in order 
to get any reliable result. However, the situation would be opposite if these 
relations were exact or if the departure could be estimated very precisely. 
It is thus tempting to try to construct models where, for instance, the 
[0, 1] Pad6 approximant would be exact. 

A modest step in this direction consists in considering the D 
dependence of the approximate relations studied in the special case D = 3 
in Section 3 and comparing with the nearest neighbor models. In the rest 
of this section, we consider the infinite-volume limit and the reference to n 
disappears. In Fig. 5 we plot A,,/b,, for m = 3 and 4 as a function of D 
using the exact analytical results of ref.7. We see that both quantities 
decrease when D becomes large and vanish for special values of D between 
1 and 2. A more detailed graph would show that A3 vanishes near D = 1.14 
and A4 near D = 1.66. It is not clear that we can learn anything interesting 
from the behavior of the coefficients in this low-D region. On the other 
hand, the fact that the approximation becomes better for large D is due to 
the fact that, as for the nearest neighbor models, t~2~ the corrections to the 
Gaussian result b,,,/b"~'= 1 vanish. Note that the approximation discussed 

I 

0.04 

A~,z'b m 

0 . 0 2  'm, = 4 

i i I i i i i 

0 5 D 10 

Fig. 5. The difference between the exact and approximate values of the third and fourth 
coefficients divided by the exact value, as a function of D. The analytical results of ref. 8 in 
the infinite-volume limit were used to draw the curves. 
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in Section 3 is more general than the Gaussian approximation, since it 
allows b_, to be distinct from b~Z; however, it is obviously exact in the 
Gaussian approximation. 

We first consider the nearest neighbor case. After an elementary 
calculation and an appropriate expansion of tanh(fl), we obtain that for 
the Ising models with nearest neighbor interactions on a hypercubic lattice 
of dimension D: bl = 2D, b2 = - -2D + 4D 2, b 3 = 4D/3 - 8D 3, b4 --- 10D/3 + 
16D2/3 - 24D 3 + 16D 4. 

Expanding A,,/b,,, in I/D, we obtain 

(A~33) 1 1 1 5 ( 1 )  6 
=6-D 36D 3 36D 4 216D ~ + O (5.1) 

and 

= 12D 4D'- 18D 3 288D 4 1728D ---------~ q- O (5.2) 

We can now compare with a similar expansion for the hierarchical 
model. Using the results of Section 6 of ref. 7, we obtain 

(A3) 81~ 5 1 2 1 ~  - 3D ~ 9D 3 

24881og(2) 4 2664321og(2)5+ ( 1 )  6 
+ 3D 4 27D5 O (5.3) 

and 

( A4"~ 20 log~2) 2 1096 log(2) 3 

~44J = ~ 9D 3 

80084 log(2, 4 2764360 log(2) 5 ( 1 )  6 
+ 63D4 441D s + O (5.4) 

It is clear that the corrections to the Gaussian result appear at a 
higher order [ ( l /D)  2"] for the hierarchical model than for the nearest 
neighbor model. However, a direct comparison of the two expansions does 
not shed any new light on Table III. The reason is that for D = 3, the series 
given in Eqs. (5.3)-(5.4) diverge. The origin of these divergences can be 
found from the zeros and poles of the coefficients in the complex 1/1) plane 
(see ref. 7 for more detail). For instance, in the case of Eq. (5.3), we found 
a pair of poles at ( l /D)=-0 .15608  _+ i0.042037 and then at ( l /D)=0.25,  
etc. A complete description seems to be of little interest, since it does not 
suggest any way to improve the approximation. 
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We end this section with a speculative note. Supersymmetric gauge 
theories provide nontrivial examples where the dependence of some Green's 
functions on the mass is expected to be a simple power law, t13~ which is 
somehow the same thing as saying that Eq. (3.1) is exact. It is clearly dif- 
ficult to compare these supersymmetric theories, which as far as we know 
do not have a satisfactory lattice regularization, with the spin models con- 
sidered here. However, the nonlocality of the hierarchical model suggests 
that it is an "effective" theory obtained after integrating over some other 
local variables. Indeed, a concrete example has been given in ref. 15, where 
the hierarchical model was reformulated as a local theory with additional 
spin variables integrated with a Gaussian measure. It thus conceivable 
that one could find a reformulation of the hierarchical model where 
approximate symmetries playing a role similar to the supersymmetries 
could be more manifest. 

6. C O N C L U S I O N S  

We have presented a recursive method of calculation which allows an 
emcient calculation of the high-temperature expansion of the hierarchical 
Ising model. The number of coefficients calculated is larger than what 
seems achievable c1~ 1~) in the case of nearest neighbor models. However, 
our errors on the critical exponent ), range between 0.05 and 0.1 and are 
much larger than the typical precision (0.001) obtained for nearest 
neighbor models with less than 20 coefficients. We have carefully con- 
sidered the errors due to the fact that we used a large but finite volume to 
calculate the coefficients and concluded that these errors were much smaller 
than the effects described above. 

We have identified the reason for this slow approach of the asymptotic 
regime by comparing the departure from the approximation corresponding 
to a [0, 1 ] Pad6 approximant. The last two columns of Table III  indicate 
that at least 50 coefficients will be necessary in order to get a precision of 
0.001 for ~. However, Tables IV and V seem to leave open the possibility 
that a much larger number might be necessary. With the numerical method 
used in this paper, it would probably take a year to calculate 400 coef- 
ficients. We are presently working on an optimized version ~lm of the exist- 
ing program which would allow us to achieve this goal in a shorter time. 

Note that redursive methods have been found (~ ~ to calculate the high- 
temperature expansion of the 3D Ising model with nearest neighbor inter- 
actions. Their recursive step consists in adding one spin and the calculation 
requires large parallel computers to calculate 24 coefficients. Our recursive 
step consists in putting in contact two identical systems of size 2" in order 
to get a system of size 2" + ~ and 24 coefficients can be obtained within less 
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than 2 days with a PC. On the other hand, with 24 coefficients, we obtain 
estimates which are less precise by one order of magnitude. We would like 
to check whether or not the following possibility occurs: our recursive algo- 
rithm would require a logarithmically smaller time of computation, but at 
the same time require an exponentially larger number of coefficients in 
order to reach a given precision. 

Having at hand a large number of coefficients for the high-temperature 
expansion would allow precise comparison with the e-expansion, for which 
a larger number of coefficients is available, tg~ In the case of the nearest 
neighbor models, discrepancies have been observed between these two 
methods (for references to the extensive literature, see ref. 17). However, 
several authors ~8~ have shown that these discrepancies can be removed by 
an appropriate treatment of the confluent singularities. For the hierarchical 
model, this is a completely open question. It is also possible that the 
simplicity of Eqs. (2.6)-(2.8) would allow us to obtain analytical results 
concerning the asymptotic behavior of the high-temperature expansion. 
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